K04-P | Surface roughness | R_{tmax} | R _a | | | | | |--|------------|------------------|--|--|--|--| | | · | | | | | | | Sliding surface | ≤ 2,5 µm | 0,05-0,2 μm | | | | | | Bottom of groove | ≤ 6,3 µm | ≤ 1,6 µm | | | | | | Groove face | ≤ 15 µm | \leq 3 μm | | | | | | Bearing area: 50–95% and a cutting depth of 0,5 R $_{\rm z}$ based on $\rm C_{\rm ref}$ = 0% | | | | | | | | D | rd dimensi | d | L | R_{max} | С | Maxima
s* | l radial ext | rusion ga _l | ρ | |------------------------------------|-------------------------------------|---|---|--|--|--|--|--|--| | H9
over | incl. | h10 | +0,2 | | | 20 bar | 100 bar | 400 bar | 700 bar | | mm | | | | | | mm | | | | | 13
25
50
75
150
300 | 25
50
75
150
300
500 | D-8
D-10
D-12
D-15
D-20
D-25 | 6,0
7,0
8,0
10,0
12,0
18,0 | 0,4
0,4
0,4
0,4
0,4
0,4 | 3,5
4,0
4,5
5,0
6,0
8,5 | 0,80
1,00
1,25
1,50
2,00
2,50 | 0,80
1,00
1,24
1,47
1,77
2,06 | 0,30
0,37
0,42
0,46
0,54
0,62 | 0,04
0,04
0,05
0,05
0,06
0,06 | | 500
600
1000 | 600
1000
1600 | D – 30
D – 40
D – 50 | 20,0
26,0
32,0 | 0,4
0,4
0,4 | 10,0
13,0
15,0 | 3,00
3,00
3,00 | 2,43
2,43
2,43 | 0,76
0,76
0,76 | 0,06
2)
2) | ## application not bolded symbols; please consult our technical for application limitations $^{^{1)}}$ Extrusion gap values shown above are valid for a temperature of 70 °C, higher temperatures require lower values. $^{2)}$ Please contact SKF. | | material | | | max. surface
speed | max. pressure ¹ | hydrolysis | dry running | wear resistance | |-----------------|-------------|----------------------------|----------------|-----------------------|----------------------------|------------|-------------|-----------------| | sealing element | energizer | back-up ring | temperature | | | | | | | ECOPUR | Ecorubber 1 | Ecotal/Ecomid ² | -30 °C +100 °C | 0,5 m/s | 700 bar (70 MPa) | - | + | + | | H-ECOPUR | Ecorubber 1 | Ecotal/Ecomid ² | -20 °C +100 °C | 0,5 m/s | 700 bar (70 MPa) | - | + | + | | T-ECOPUR | Ecorubber 1 | Ecotal/Ecomid ² | -30 °C +100 °C | 0,5 m/s | 700 bar (70 MPa) | - | + | + | | S-ECOPUR | Ecorubber 1 | Ecotal/Ecomid ² | -20 °C +100 °C | 0,7 m/s | 700 bar (70 MPa) | - | + | + | | G-ECOPUR | Ecorubber 1 | Ecotal/Ecomid ² | -30 °C +100 °C | 0,5 m/s | 700 bar (70 MPa) | - | + | + | the stated operation conditions represent general indications. it is recommended not to use all maximum values simultaneously. surface speed limits apply only to the presence of adequate lubrication film. - ¹ pressure ratings are dependent on the size of the extrusion gap. - ² Ecotal up to ø260 mm, Ecomid above ø260 mm. - ++ ... particularly suitable - o ... conditional suitable - + ... suitable ... not suitable for detailed information regarding chemical resistance please refer to our "list of resistance". for increased chemical and thermal resistance rubber materials are to be preferred, attention should be paid to restrictions for pressure range and wear resistance. for higher gliding speeds another system should be used (e.g. PTFE materials). note on special materials: materials such as Viton, Silicone, EPDM, H-NBR, etc. can also be used for the preload element, but they are only useful in specific cases (temperature or chemical influences). the temperature limits are also determined by the supporting element; using special material can expand the temperature range. #### mode of installation for inside diameters of 40mm and more, the seal can generally be slipped over the piston and snapped into closed grooves. due to occuring deformation force at installation, assembly aid tools are to be used for large cross-sections. the material deformation should not exceed the value of 20%, otherwise the permanent deformation would be too large. ### recommended mounting space: plastic guiderings (wearbands) have to feature a adequate cutting gap (recommendation: 2-5% of D). if metalic guides are used, spiral grooves shall be provided. smaller values for Hmin will ease the installation (reduced elongation and mounting force) but the height of the retaining collar has to be sufficient to assure a stable fit in the housing (larger than cs/2, smaller retaining collars will increase the danger of eversion of the profile in case of occuring drag pressure). in order to avoid drag pressure built up in case of back-to-back arrangement, the distance between the seals should be as small as possible. #### insertion chamfer: in order to avoid damage to the piston seal during installation, the piston and the housing is to be chamfered and rounded as shown in the "recommended mounting space" drawing. the size of chamfer depends on the seal type and profile width. | (·- · | c (mm) | | | | | |---------|----------------------------------|----------------------------------|--|--|--| | cs (mm) | $\alpha = 15^{\circ} 20^{\circ}$ | $\alpha = 20^{\circ} 30^{\circ}$ | | | | | 4 | 3,5 | 2 | | | | | 5 | 4 | 2,5 | | | | | 6 | 4,5 | 3 | | | | | 7,5 | 5 | 4 | | | | | 10 | 6 | 5 | | | | | 12,5 | 8,5 | 6,5 | | | | | 15 | 10 | 7,5 | | | | | 20 | 13 | 10 | | | | instead of a chamfer, the piston can also be designed with a radius. recommended size of the radius is equal to size of chamfer (R=c).